Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
3740191
Reference Type
Journal Article
Title
Nonideal regimes of deflagration and detonation of black powder
Author(s)
Ermolaev, BS; Belyaev, AA; Viktorov, SB; Sleptsov, KA; Zharikova, SYu
Year
2010
Is Peer Reviewed?
1
Journal
Russian Journal of Physical Chemistry B, Focus on Physics
ISSN:
1990-7931
EISSN:
1990-7923
Volume
4
Issue
3
Page Numbers
428-439
Language
English
DOI
10.1134/S1990793110030103
Web of Science Id
WOS:000283363800010
Abstract
The explosive and deflagration properties of black powder differ significantly from those of modern propellants and compositions based on ammonium nitrate or ammonium perchlorate. Possessing a high combustibility, black powder is capable of maintaining stable combustion at high velocities in various shells, be it steel shells or thin-walled plastic tubes, without experiencing deflagration-to-detonation transition. It is extremely difficult to detonate black powder, even using a powerful booster detonator. The results of numerical simulations of a number of key experiments on the convective combustion and shock initiation of black powder described in the literature are presented. The calculations were performed within the framework of a model developed previously for describing the convective combustion of granulated pyroxylin powders, with small modifications being introduced to allow for the specific properties of black powder. The thermophysical properties of the products of combustion and detonation and the parameters of the equation of state of black powder were determined from thermodynamic calculations. The calculation results were found to be in close agreement with the experimental data. The simulation results were used to analyze the regularities of the wave processes in the system and their relation to the properties of black powder and the experimental conditions. It was demonstrated that the effects observed could be explained by a weak dependence of the burning rate of black powder on the pressure. © 2010 Pleiades Publishing, Ltd.
Tags
IRIS
•
Nitrate/Nitrite
Supplemental LitSearch Update 1600-2015
WoS
New to project
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity