Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
3846625
Reference Type
Journal Article
Title
Sexual dimorphism in the effect of maternal obesity on antioxidant defense mechanisms in the human placenta
Author(s)
Evans, L; Myatt, L
Year
2017
Is Peer Reviewed?
1
Journal
Placenta
ISSN:
0143-4004
EISSN:
1532-3102
Volume
51
Page Numbers
64-69
Language
English
PMID
28292470
DOI
10.1016/j.placenta.2017.02.004
Web of Science Id
WOS:000398645400008
Abstract
INTRODUCTION:
Maternal obesity creates an adverse intrauterine environment, negatively impacts placental respiration, is associated with a higher incidence of pregnancy complications and programs the offspring for disease in adult life in a sexually dimorphic manner. We defined the effect of maternal obesity and fetal sex on pro- and anti-oxidant status in placenta and placental mitochondria.
METHODS:
Placental villous tissue was collected at term via c-section prior to labor from four groups of patients based on fetal sex and prepregnancy/1st trimester body mass index: lean - BMI 22.1 ± 0.3 (6 male, 6 female) and obese - BMI 36.3 ± 0.4 (6 male, 6 female). Antioxidant enzyme activity, mitochondrial protein carbonyls, nitrotyrosine residues, total and nitrated superoxide dismutase (SOD) and nitric oxide synthesis were measured.
RESULTS:
Maternal obesity was associated with decreased SOD and catalase activity, and total antioxidant capacity (TAC), but increased oxidative (protein carbonyls) and nitrative (nitrotyrosine) stress in a sexually dimorphic manner. Placentas of lean women with a male fetus had higher SOD activity and TAC (p < 0.05) than other groups whereas obese women with a male fetus had highest carbonyls and nitrotyrosine (p < 0.05). Glutathione peroxidase and thioredoxin reductase activity increased with obesity, significantly with a male fetus, perhaps as a compensatory response.
CONCLUSION:
Maternal obesity affects oxidative stress and antioxidant activity in the placenta in a sexually dimorphic manner. The male fetus of a lean women has the highest antioxidant activity, a protection which is lost with obesity perhaps contributing to the increased incidence of adverse outcomes with a male fetus.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity