Health & Environmental Research Online (HERO)


Print Feedback Export to File
3849854 
Journal Article 
Antimony and Arsenic Behavior during Fe(II)-Induced Transformation of Jarosite 
Karimian, N; Johnston, SG; Burton, ED 
2017 
Environmental Science & Technology
ISSN: 0013-936X
EISSN: 1520-5851 
51 
4259-4268 
English 
Jarosite can be an important scavenger for arsenic (As) and antimony (Sb) in acid mine drainage (AMD) and acid sulfate soil (ASS) environments. When subjected to reducing conditions, jarosite may undergo reductive dissolution, thereby releasing As, Sb, and Fe(2+) coincident with a rise in pH. These conditions can also trigger the Fe(2+)-induced transformation of jarosite to more stable Fe(III) minerals, such as goethite. However, the consequences of this transformation process for As and Sb are yet to be methodically examined. We explore the effects of abiotic Fe(2+)-induced transformation of jarosite on the mobility, speciation, and partitioning of associated As(V) and Sb(V) under anoxic conditions at pH 7. High concentrations of Fe(2+) (10 and 20 mM) rapidly (<10 min) transformed jarosite to a green rust intermediary, prior to the subsequent precipitation of goethite within 24 h. In contrast, lower concentrations of Fe(2+) (1 and 5 mM) led to the formation of lepidocrocite. As K-edge XANES spectroscopy revealed some reduction of As(V) to As(III) at higher concentrations of Fe(2+), while Sb L1-edge XANES spectroscopy indicated no reduction of Sb(V). The transformation processes enhanced Sb mobilization into the aqueous phase, while As was instead repartitioned to a surface-bound exchangeable phase. The results imply that Fe(2+)-induced transformation of As/Sb-jarosite can increase Sb mobility and exert major influences on As partitioning and speciation.