Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
3866030
Reference Type
Journal Article
Title
A fluorescence turn-on biosensor based on graphene quantum dots (GQDs) and molybdenum disulfide (MoS2) nanosheets for epithelial cell adhesion molecule (EpCAM) detection
Author(s)
Shi, J; Lyu, J; Tian, F; Yang, M
Year
2017
Is Peer Reviewed?
Yes
Journal
Biosensors and Bioelectronics
ISSN:
0956-5663
EISSN:
1873-4235
Volume
93
Page Numbers
182-188
Language
English
PMID
27614683
DOI
10.1016/j.bios.2016.09.012
Web of Science Id
WOS:000399259000026
Abstract
This paper presents a "turn-on" fluorescence biosensor based on graphene quantum dots (GQDs) and molybdenum disulfide (MoS2) nanosheets for rapid and sensitive detection of epithelial cell adhesion molecule (EpCAM). PEGylated GQDs were used as donor molecules, which could not only largely increase emission intensity but also prevent non-specific adsorption of PEGylated GQD on MoS2 surface. The sensing platform was realized by adsorption of PEGylated GQD labelled EpCAM aptamer onto MoS2 surface via van der Waals force. The fluorescence signal of GQD was then quenched by MoS2 nanosheets via fluorescence resonance energy transfer (FRET) mechanism. In the presence of EpCAM protein, the stronger specific affinity interaction between aptamer and EpCAM protein could detach GQD labelled EpCAM aptamer from MoS2 nanosheets, leading to the restoration of fluorescence intensity. By monitoring the change of fluorescence signal, the target EpCAM protein could be detected sensitively and selectively with a linear detection range from 3nM to 54nM and limit of detection (LOD) around 450pM. In addition, this nanobiosensor has been successfully used for EpCAM-expressed breast cancer MCF-7 cell detection.
Tags
IRIS
•
Molybdenum
Litsearch 2018
Pubmed
WOS
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity