Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
4001253
Reference Type
Journal Article
Title
Preparation and characterization of nonaqueous proton-conducting membranes with protic ionic liquids
Author(s)
Lu, F; Gao, X; Yan, X; Gao, H; Shi, L; Jia, H; Zheng, L
Year
2013
Is Peer Reviewed?
1
Journal
ACS Applied Materials & Interfaces
ISSN:
1944-8244
EISSN:
1944-8252
Volume
5
Issue
15
Page Numbers
7626-7632
Language
English
PMID
23855417
DOI
10.1021/am401940y
Web of Science Id
WOS:000323241100116
Abstract
Hybrid Nafion membranes were successfully fabricated by incorporating with protic imidazolium ionic liquids 1-(2-aminoethyl)-3-methylimidazolium chloride ([MimAE]Cl), 1-(2-hydroxylethyl)-3-methylimidazolium chloride ([MimHE]Cl), and 1-carboxylmethyl-3-methylimidazolium chloride ([MimCM]Cl) for high-temperature fuel cells. The composite membranes were characterized by impedance spectroscopy, small-angle X-ray scattering (SAXS), scanning electronic microscopy (SEM), and thermogravimetric analysis (TGA). The incorporated protic ionic liquids enhance the doping of phosphoric acid (PA) and result in a relatively high ionic conductivity. The Nafion/10 wt % [MimAE]Cl/PA composite membrane exhibits an ionic conductivity of 6.0 mS/cm at 130 °C without humidification. [MimAE]Cl can swell the Nafion matrix more homogeneously than [MimHE]Cl or [MimCM]Cl, which results in a better ionic conductivity. It is notable that the composite Nafion/IL/PA membranes have a better thermal stability than the pristine Nafion membranes.
Tags
PFAS
•
Nafion
Literature Search Update 12/2020
PubMed
Literature Search 6/2019
PubMed
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity