Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
4052383
Reference Type
Journal Article
Title
Catalytic reforming of methane with carbon dioxide over nickel catalysts .2. Reaction
Author(s)
Bradford, MCJ; Vannice, MA
Year
1996
Is Peer Reviewed?
1
Journal
Applied Catalysis A: General
ISSN:
0926-860X
EISSN:
1873-3875
Publisher
Elsevier
Volume
142
Issue
1
Page Numbers
97-122
DOI
10.1016/0926-860X(96)00066-X
Web of Science Id
WOS:A1996UZ78000008
URL
https://linkinghub.elsevier.com/retrieve/pii/0926860X9600066X
Exit
Abstract
The reforming of methane with carbon dioxide was studied over nickel supported on SiO2, TiO2, MgO and activated carbon. Specific activities on a turnover frequency basis were in the order: Ni/TiO2 > Ni/C > Ni/SiO2 > Ni/MgO. Interestingly, a 2-fold increase in activation energy for this reaction was observed over Ni/TiO2 after several hours time on stream. The reverse water-gas shift reaction was found to be close to thermodynamic equilibrium over all catalysts. Partial pressure dependencies were obtained with the Ni/C and Ni/SiO2 catalysts at 723 K for comparative purposes only, but a more thorough kinetic analysis was made with the Ni/MgO and Ni/TiO2 catalysts, which were shown previously to strongly inhibit carbon deposition. Partial pressure dependencies were obtained at 673, 698, and 723 K for Ni/TiO2 and at 773, 798, and 823 K for Ni/MgO. In situ DRIFTS studies clearly showed the presence of both Linear and bridged carbon monoxide adsorption on Ni/SiO2 under reaction conditions; however, adsorbed carbon monoxide could not be identified on Ni/TiO2. A reaction model for CH4-CO2 reforming, based on CH4 activation to form CHx and CHxO decomposition as the slow kinetic steps, successfully correlated the rate data.
Keywords
kinetics; methane; carbon dioxide; reforming; nickel; titania; silica; magnesium oxide; carbon
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity