Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
4088398
Reference Type
Journal Article
Title
Metabolic engineering of Escherichia coli to enhance acetol production from glycerol
Author(s)
Yao, R; Liu, Q; Hu, H; Wood, TK; Zhang, X
Year
2015
Is Peer Reviewed?
Yes
Journal
Applied Microbiology and Biotechnology
ISSN:
0175-7598
EISSN:
1432-0614
Volume
99
Issue
19
Page Numbers
7945-7952
Language
English
PMID
26078109
DOI
10.1007/s00253-015-6732-9
Web of Science Id
WOS:000360839800012
Abstract
Acetol, a C3 keto alcohol, is an important intermediate used to produce polyols and acrolein. To enhance acetol production from glycerol by Escherichia coli, a mutant (HJ02) was constructed by replacing the native glpK gene with the allele from E. coli Lin 43 and overexpression of yqhD, which encodes aldehyde oxidoreductase YqhD that converts methylglyoxal to acetol. Compared to the control strain without the glpK replacement, HJ02 had 5.5 times greater acetol production and a 53.4 % higher glycerol consumption rate. Then, glucose was added as a co-substrate to enhance NADPH availability and the ptsG gene was deleted in HJ02 (HJ04) to alleviate carbon catabolite repression, which led to a 30 % increase in the NADPH level and NADPH/NADP(+). Consequently, HJ04 accumulated up to 1.20 g/L of acetol, which is 69.0 % higher than that of HJ02. Furthermore, the gapA gene in HJ04 was silenced by antisense RNA (HJ05) to further enhance acetol production. The acetol concentration produced by HJ05 reached 1.82 g/L, which was 2.1 and 1.5 times higher than that of HJ02 and HJ04.Real-time PCR analysis indicates that glucose catabolism was rerouted from glycolysis to the oxidative pentose phosphate pathway in HJ05.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity