Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
4105986
Reference Type
Journal Article
Title
Regulation of metastasis of pediatric multiple myeloma by MMP13
Author(s)
Wang, X; Cao, X
Year
2014
Is Peer Reviewed?
1
Journal
Tumor Biology
ISSN:
1010-4283
EISSN:
1423-0380
Volume
35
Issue
9
Page Numbers
8715-8720
Language
English
PMID
24870599
DOI
10.1007/s13277-014-2147-y
Web of Science Id
WOS:000343662000045
Relationship(s)
has retraction
4098513
Retraction Note to multiple articles in Tumor Biology
Abstract
The molecular mechanism underlying metastasis of pediatric multiple myeloma (MM) remains elusive. Here, we showed that the levels of MMP13 are significantly higher in MM from young patients than those from adult patients. Moreover, a strong correlation of the MMP13 and phosphorylated fibroblast growth factor receptor 4 (FGFR4) levels was detected in MM from young patients. To prove a causal link between activation of fibroblast growth factor receptors (FGFR) signaling pathway and MMP13 expression, we used a human MM line, RPMI-8226 (8226), to study the underlying molecular basis. We found that FGF1-induced FGFR4 phosphorylation in 8,226 cells resulted in significant activation of MMP13, and consequently, an increase in cancer invasiveness. FGFR4 inhibition in 8,226 cells abolished FGF1-stimulated MMP13 expression, suggesting that activation of FGFR signaling pathway in MM may promote cancer metastasis by inducing MMP13 expression. To define the signaling cascades downstream of FGFR4 activation for MMP13 activation, we applied specific inhibitors for PI3K, Jun N-terminal kinase (JNK), and ERK/MAPK, respectively, to the FGF1-stimulated 8,226 cells. We found that only inhibition of ERK1/2 significantly decreased the activation of MMP13 in response to FGF stimulation, suggesting that activation of FGFR signaling may activate ERK/MAPK, rather than JNK or PI3K pathway to activate MMP13 expression in 8,226 cells. Our study thus highlights FGFR4 signaling pathway and MMP13 as novel therapeutic targets for MM.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity