Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
4106386
Reference Type
Journal Article
Title
Inhibition of FoxO1 nuclear exclusion prevents metastasis of glioblastoma
Author(s)
Chen, J; Huang, Q; Wang, F
Year
2014
Is Peer Reviewed?
1
Journal
Tumor Biology
ISSN:
1010-4283
EISSN:
1423-0380
Volume
35
Issue
7
Page Numbers
7195-7200
Language
English
PMID
24771221
DOI
10.1007/s13277-014-1913-1
Web of Science Id
WOS:000339736300126
Relationship(s)
has retraction
4098513
Retraction Note to multiple articles in Tumor Biology
Abstract
Glioblastoma is the most aggressive malignant primary brain tumor in humans, with extremely poor patient survival. Although previous studies have demonstrated that expression of matrix metalloproteinase-9 (MMP9) in glioblastoma promotes cancer metastasis, the upstream molecular signaling cascades that control activation of MMP9 remain largely unknown. Here, we used a human glioblastoma line, A-172, to examine molecular signaling to activate MMP9. We found that epidermal growth factor (EGF)-induced activation of epidermal growth factor receptor (EGFR) in A-172 cells activated MMP9, resulting in an increase in cancer invasiveness. A specific inhibitor for EGFR efficiently blocked EGF-induced activation of MMP9 and then cancer invasiveness. Moreover, an inhibitor for phosphatidylinositol 3-kinase (PI-3 K)/protein kinase B (Akt) significantly inhibited the EGF-induced activation of MMP9. Furthermore, nuclear exclusion of a major Akt downstream target, Forkhead box protein O1 (FoxO1), was induced by Akt activation, which could be inhibited by either an EGFR inhibitor or by PI-3 K/Akt inhibitor. An expression of a constitutive nuclear form of FoxO1 significantly inhibited MMP9 activation induced by EGF. Taken together, these findings suggest that EGF/EGFR signaling activates downstream PI-3 K/Akt to induce FoxO1 nuclear exclusion, which activates MMP9 to promote glioblastoma invasiveness. Thus, FoxO1 appears to be a novel therapeutic target for inhibiting metastasis of glioblastoma.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity