Health & Environmental Research Online (HERO)


Print Feedback Export to File
4127620 
Journal Article 
Review 
Advances in Agrobacterium tumefaciens-mediated genetic transformation of graminaceous crops 
Singh, RK; Prasad, M 
2016 
Protoplasma
ISSN: 0033-183X
EISSN: 1615-6102 
253 
691-707 
English 
Steady increase in global population poses several challenges to plant science research, including demand for increased crop productivity, grain yield, nutritional quality and improved tolerance to different environmental factors. Transgene-based approaches are promising to address these challenges by transferring potential candidate genes to host organisms through different strategies. Agrobacterium-mediated gene transfer is one such strategy which is well known for enabling efficient gene transfer in both monocot and dicots. Due to its versatility, this technique underwent several advancements including development of improved in vitro plant regeneration system, co-cultivation and selection methods, and use of hyper-virulent strains of Agrobacterium tumefaciens harbouring super-binary vectors. The efficiency of this method has also been enhanced by the use of acetosyringone to induce the activity of vir genes, silver nitrate to reduce the Agrobacterium-induced necrosis and cysteine to avoid callus browning during co-cultivation. In the last two decades, extensive efforts have been invested towards achieving efficient Agrobacterium-mediated transformation in cereals. Though high-efficiency transformation systems have been developed for rice and maize, comparatively lesser progress has been reported in other graminaceous crops. In this context, the present review discusses the progress made in Agrobacterium-mediated transformation system in rice, maize, wheat, barley, sorghum, sugarcane, Brachypodium, millets, bioenergy and forage and turf grasses. In addition, it also provides an overview of the genes that have been recently transferred to these graminaceous crops using Agrobacterium, bottlenecks in this technique and future possibilities for crop improvement. 
IRIS
• Nitrate/Nitrite
     Broad LitSearch 2016/1/1 - 2017/12/5
          Refs found by LitSearch but not ATSDR/IARC
          PubMed
          WoS
     Refs found only by 2017 LitSearch or Citation Mapping
     Ref Types 12/2017
          Reviews
     LitSearch Update 2016-2017
          PubMed
          WoS
     Supplemental LitSearch Update 1900-2015
          PubMed