Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
4221675
Reference Type
Journal Article
Title
Covalent cross-linking of erythrocyte spectrin by carbon disulfide in vivo
Author(s)
Valentine, WM; Graham, DG; Anthony, DC
Year
1993
Is Peer Reviewed?
1
Journal
Toxicology and Applied Pharmacology
ISSN:
0041-008X
EISSN:
1096-0333
Report Number
NIOSH/00215846
Volume
121
Issue
1
Page Numbers
71-77
Language
English
PMID
8337701
DOI
10.1006/taap.1993.1130
Web of Science Id
WOS:A1993LM69200010
Abstract
Covalent cross-linking of proteins by CS2 has been demonstrated in vitro and represents a potential mechanism for the toxicity of this compound. In the present investigation the ability of CS2 to cross-link proteins covalently in vivo is demonstrated using denaturing polyacrylamide gel electrophoresis. Intraperitoneal injection of CS2 in rats at 2 or 5 mmol/kg for 21 or 42 days produced several high-molecular-weight (approximately 410 kDa) proteins eluted from erythrocyte membranes which were not present in control animals. Limited proteolysis of the high-molecular-weight protein bands, monomeric alpha spectrin, and monomeric beta spectrin using endoproteinase glu-C, followed by peptide mapping on denaturing polyacrylamide gels, showed the high-molecular-weight proteins to be alpha,beta heterodimers. The production of multiple heterodimers exhibiting different distances of migration was consistent with the existence of several preferred sites for cross-linking. Evidence for the presence of dithiocarbamate ester and thiourea cross-linking structures in spectrin dimers was obtained using selective base hydrolysis. No spectrin dimer was detected in control animals, and dimer formation demonstrated a cumulative dose response in CS2-treated rats. The longevity of red blood cells, the cumulative dose response, and the stability of the cross-linking structures endows spectrin cross-linking with the potential to serve as a biomarker of chronic low-level exposures to CS2 and may provide a means to correlate pathological changes with existing methods of CS2 exposure monitoring. The ability of CS2 to covalently cross-link erythrocyte spectrin suggests that CS2 may also cross-link other proteins in vivo and supports covalent cross-linking of proteins as a possible molecular mechanism through which CS2 manifests toxicity. If so, then spectrin cross-linking may parallel cross-linking reactions in the axon and provide a sensitive, preneurotoxic biomarker of this molecular event.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity