Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
4267695
Reference Type
Journal Article
Title
Selective leaching of valuable metals from laterite nickel ore with ammonium chloride-hydrochloric acid solution
Author(s)
Li, J; Li, D; Xu, Z; Liao, C; Liu, Ye; Zhong, Bo
Year
2018
Is Peer Reviewed?
1
Journal
Journal of Cleaner Production
ISSN:
0959-6526
EISSN:
1879-1786
Volume
179
Page Numbers
24-30
DOI
10.1016/j.jclepro.2018.01.085
Web of Science Id
WOS:000425568700003
Abstract
During the recent years, selective leaching from laterite ore has gained considerable interest from the scientific community because of the growing demand of valuable metals including nickel and cobalt. However, high energy consumption and serious environmental pollution have been the major drawbacks of the current leaching methods, leading to a strong desire for the development of alternative approaches. Herein, we have successfully developed a clean method to selectively leach nickel from laterite ore using chlorination hydrometallurgical technology, which has a greatly reduced environmental impact and mild reaction requirements. In this work, ammonium chloride solution was used as the chlorination agent and the process was achieved under 2 M of hydrochloric acid, 3 M of ammonium chloride and a liquid/solid ratio of 6:1 (mL/g) at 90 degrees C for 90 min. Notably, the process resulted in a good yield, with nickel (87.7%), cobalt (75.1%), manganese (95.6%), and iron (only 21.1%). The leaching mechanism was demonstrated by the analysis of XRD pattern of leaching residue and raw ore, suggesting that chloride ions are beneficial to the dissolution of goethite mineral in nickel laterite. When comparing with other chloride solutions which exhibit high leaching in weak acid, ammonium chloride has demonstrated a promising ability to activate hydrogen ion, as evidenced in the simulation result of OLI system. The reusability of ammonia chloride in leaching raffinate showed that this method has great potential for eco-friendly and practical industrial application toward sustainable refining of valuable metals from laterite nickel ores. (C) 2018 Elsevier Ltd. All rights reserved.
Keywords
Ammonium chloride; Laterite; Selective leaching; Leaching mechanism; Strengthening ion activity
Tags
•
Cobalt
LitSearch: January 2008 - August 2018
WoS
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity