Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
4268369
Reference Type
Journal Article
Title
Solvent extraction process for the recovery of nickel and cobalt from Caldag laterite leach solution: The first bench scale study
Author(s)
Kursunoglu, S; Ichlas, ZT; Kaya, M
Year
2017
Is Peer Reviewed?
Yes
Journal
Hydrometallurgy
ISSN:
0304-386X
Volume
169
Page Numbers
135-141
DOI
10.1016/j.hydromet.2017.01.001
Web of Science Id
WOS:000401878200016
Abstract
A solvent extraction application consisting of two-sequential solvent extraction circuits to separate the nickel and cobalt from a synthetic sulphate leach solution which simulates a typical Caldag lateritic leach solution was conceived and experimentally explored. The first circuit allowed the simultaneous extraction of most of the nickel (98%), cobalt (98%) and manganese (94%) with 20% neodecanoic acid (Versatic 10) and 5% tri-n-butyl phosphate (TBP) in ShellSol 2046 at pH 72 together with substantial amounts of calcium (65%) and magnesium (12%). Three stages of scrubbing at pH 5.6 using diluted sulphuric acid solution allowed the removal of most of the magnesium (90%) and substantial amount of calcium (16%). Complete stripping of nickel, cobalt, manganese, magnesium and calcium was achieved at pH 0.75. This loaded strip solution was the feed for the second circuit. The use 15% bis(2,4,4-trimethylpentyl) phosphinic acid (Cyanex 272) and 5% TBP in ShellSol 2046 allowed the extraction of most of the cobalt (94%) and manganese (98%) at pH 5.0 but with substantial co-extraction of magnesium (41%) and calcium (40%) and a minor amount of nickel (3%). A two-stage scrubbing of this loaded organic with cobalt (20 g L-1) solution was performed. Magnesium, calcium and nickel were completely displaced with cobalt. Most of the manganese (93%) was removed from the organic. Complete stripping of the cobalt and manganese in the scrubbed organic phase was achieved at pH 1.0. Therefore, nickel (94%) and cobalt (91%) were totally separated from the feed solution. In addition, slope analyses were carried out to determine the nature of the extracted complexes of the nickel and cobalt with each extractant. Based on the experimental results, a flowsheet for the separation process is presented. (C) 2017 Elsevier B.V. All rights reserved.
Keywords
Nickel; Cobalt; Caldag; Versatic 10; Cyanex 272; TBP; ShellSol 2046; Solvent extraction
Tags
IRIS
•
Cobalt
LitSearch: January 2008 - August 2018
WoS
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity