Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
4298252
Reference Type
Journal Article
Title
Blue light-induced oxidative stress in live skin
Author(s)
Nakashima, Y; Ohta, S; Wolf, AM
Year
2017
Is Peer Reviewed?
Yes
Journal
Free Radical Biology and Medicine
ISSN:
0891-5849
EISSN:
1873-4596
Volume
108
Page Numbers
300-310
Language
English
PMID
28315451
DOI
10.1016/j.freeradbiomed.2017.03.010
Abstract
Skin damage from exposure to sunlight induces aging-like changes in appearance and is attributed to the ultraviolet (UV) component of light. Photosensitized production of reactive oxygen species (ROS) by UVA light is widely accepted to contribute to skin damage and carcinogenesis, but visible light is thought not to do so. Using mice expressing redox-sensitive GFP to detect ROS, blue light could produce oxidative stress in live skin. Blue light induced oxidative stress preferentially in mitochondria, but green, red, far red or infrared light did not. Blue light-induced oxidative stress was also detected in cultured human keratinocytes, but the per photon efficacy was only 25% of UVA in human keratinocyte mitochondria, compared to 68% of UVA in mouse skin. Skin autofluorescence was reduced by blue light, suggesting flavins are the photosensitizer. Exposing human skin to the blue light contained in sunlight depressed flavin autofluorescence, demonstrating that the visible component of sunlight has a physiologically significant effect on human skin. The ROS produced by blue light is probably superoxide, but not singlet oxygen. These results suggest that blue light contributes to skin aging similar to UVA.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity