Health & Environmental Research Online (HERO)


Print Feedback Export to File
4305897 
Journal Article 
Review 
Redox Regulation of Homeostasis and Proteostasis in Peroxisomes 
Walker, CL; Pomatto, LCD; Tripathi, DN; Davies, KJA 
2018 
Physiological Reviews
ISSN: 0031-9333
EISSN: 1522-1210 
98 
89-115 
English 
Peroxisomes are highly dynamic intracellular organelles involved in a variety of metabolic functions essential for the metabolism of long-chain fatty acids, d-amino acids, and many polyamines. A byproduct of peroxisomal metabolism is the generation, and subsequent detoxification, of reactive oxygen and nitrogen species, particularly hydrogen peroxide (H2O2). Because of its relatively low reactivity (as a mild oxidant), H2O2has a comparatively long intracellular half-life and a high diffusion rate, all of which makes H2O2an efficient signaling molecule. Peroxisomes also have intricate connections to mitochondria, and both organelles appear to play important roles in regulating redox signaling pathways. Peroxisomal proteins are also subject to oxidative modification and inactivation by the reactive oxygen and nitrogen species they generate, but the peroxisomal LonP2 protease can selectively remove such oxidatively damaged proteins, thus prolonging the useful lifespan of the organelle. Peroxisomal homeostasis must adapt to the metabolic state of the cell, by a combination of peroxisome proliferation, the removal of excess or badly damaged organelles by autophagy (pexophagy), as well as by processes of peroxisome inheritance and motility. More recently the tumor suppressors ataxia telangiectasia mutate (ATM) and tuberous sclerosis complex (TSC), which regulate mTORC1 signaling, have been found to regulate pexophagy in response to variable levels of certain reactive oxygen and nitrogen species. It is now clear that any significant loss of peroxisome homeostasis can have devastating physiological consequences. Peroxisome dysregulation has been implicated in several metabolic diseases, and increasing evidence highlights the important role of diminished peroxisomal functions in aging processes.