Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
4356388
Reference Type
Journal Article
Title
Influence of polymer architecture on the structure of complexes formed by PEG-tertiary amine methacrylate copolymers and phosphorothioate oligonucleotide
Author(s)
Deshpande, MC; Garnett, MC; Vamvakaki, M; Bailey, L; Armes, SP; Stolnik, S
Year
2002
Is Peer Reviewed?
Yes
Journal
Journal of Controlled Release
ISSN:
0168-3659
EISSN:
1873-4995
Volume
81
Issue
1-2
Page Numbers
185-199
Language
English
PMID
11992691
DOI
10.1016/s0168-3659(02)00052-4
Abstract
The influence of polymer structure on the characteristics of complexes of a phosphorothioate antisense oligonucleotide (ISIS 5132) was studied, using well-defined cationic copolymers based on 2-(dimethylamino) ethyl methacrylate (DMAEMA) and poly(ethylene glycol) (PEG). The three related copolymer structures were: DMAEMA-PEG (a diblock copolymer) DMAEMA-OEGMA 7 (a brush-type copolymer), DMAEMA-stat-PEGMA (a comb-type copolymer); each of these were examined together with DMAEMA homopolymer, which served as a control. The results revealed that all the polymers exhibited good binding ability with the oligonucleotide (ON). Interestingly, the comb-type polymer DMAEMA-stat-PEGMA demonstrated the highest binding ability and DMAEMA homopolymer the lowest, as judged by a dye displacement assay. DMAEMA homopolymer produced large agglomerates of smaller individual complexes as observed by optical density, photon correlation spectroscopy and transmission electron microscopy studies. In contrast, two PEG-block copolymers, DMAEMA-PEG and DMAEMA-OEGMA 7, formed compact complexes of 80-150 nm which had good long-term colloidal stability. This is attributed to the steric stabilisation effect of the PEG chains on the ON-copolymer complexes. These two copolymers are believed to form complexes with ON that have a micellar structure. Comb-type DMAEMA-stat-PEGMA copolymer formed highly soluble complexes with the ON that did not phase separate from the buffer solution. This study clearly demonstrates that varying the copolymer architecture allows access to a range of ON complexes. In vitro cytotoxicity experiments on HepG2 cells showed that all of the tertiary amine methacrylate copolymers displayed lower cytotoxicity than the control poly(L-lysine).
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity