Health & Environmental Research Online (HERO)


Print Feedback Export to File
4368445 
Journal Article 
Non toxic, antibacterial, biodegradable hydrogels with pH-stimuli sensitivity: Investigation of swelling parameters 
Sudarsan, S; Franklin, DS; Sakthivel, M; Guhanathan, S 
2016 
Yes 
Carbohydrate Polymers
ISSN: 0144-8617
EISSN: 1879-1344 
ELSEVIER SCI LTD 
OXFORD 
148 
206-215 
English 
In this work, a series of pH-sensitive hydrogels were synthesized from Sodium alginate (SA), Ethylene glycol (EG) and Acrylic acid (AA). Biodegradability of hydrogel was tested against soil burial test for 35days and in vitro phosphate buffer solution test for 10days respectively. Degradation of the sample might be due to the breakdown of ester linkage and hydrophilic pendant functionality present in hydrogel. The progression of biodegradation was examined by Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). Detailed swelling parameters such as swelling equilibrium Seq (%) at various pH, biological fluids (distilled water (DW), physiological saline 0.89% NaCl (PS), iso-osmotic phosphate buffer at pH 7.4 (PB)) and equilibrium water content (EWC) have also been investigated, which revealed that dynamic compassion of hydrogels. The hydrogel has shown strong antibacterial activity against Escherichia coli (gram negative) and Staphylococcus aureus (gram positive) bacteria's. Cytotoxic assays, using MTT Assay in 3T3 fibroblast Cell line was performed. At 10μg/ml, cell viability was in the range of 92-94%. However, the cell viability (%) decreases with increasing concentration of sample. The synergistic effect of biodegradable hydrogels possessing excellent swelling properties, high water content, biocompatibility and wound healing tendency using in vivo test can be made as suitable candidate for biomedical applications. In vivo wound healing studies conducted on a Wister albino rat model of incision wound performed for 9days. The results revealed that more accelerated wound healing have been observed even in shorter duration. Thus, the synthesized hydrogel with great pH-responsiveness and excellent drug delivery may have a great opening for biomedical applications.