Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
4457817
Reference Type
Journal Article
Title
Low-temperature CO oxidation over integrated penthorum chinense-like MnCo2O4 arrays anchored on three-dimensional Ni foam with enhanced moisture resistance
Author(s)
Mo, S; Li, S; Xiao, H; He, Hui; Xue, Y; Zhang, M; Ren, Q; Chen, B; Chen, Y; Ye, D
Year
2018
Volume
8
Issue
6
Page Numbers
1663-1676
DOI
10.1039/c7cy02474f
Web of Science Id
WOS:000428087400018
Abstract
Advanced integrated nanoarray (NA) catalysts have been designed by growing metal-doped Co3O4 arrays on nickel foam with robust adhesion. Ternary MCo2O4 NA catalysts were prepared by doping urchin-like Co3O4 with different transition metals (Cu2+, Mn2+, Fe2+, Ni2+, Zn2+, Fe3+ and Al3+). These catalysts exhibited novel morphologies and can be directly applied as monolithic materials for CO oxidation. Among the MCo2O4 NA catalysts, CuCo2O4 nanoneedles manifested the highest catalytic activity in dry air, achieving an efficient 100% CO oxidation conversion of 20000 h(-1) at 146 degrees C, due to its reducibility at lower temperature, lattice distortion of the spinel structure, and abundant surface-adsorbed oxygen (O-ads). The doped catalytic systems were further optimized by controlling the volume ratio of reactive components in the mixed solvent, the Cu or Mn contents to determine excellent catalysts for direct application to CO oxidation at 1.0 vol% moisture. Penthorum chinense-like MnCo2O4 NAs showed optimal catalytic performance at 1 vol% moisture (T-100 = 175 degrees C), with activity higher than that of the CuCo2O4 NA catalyst, indicating that the synergistic effect between MnOx and Co3O4 improved the moisture resistance and stability. It was concluded that the moisture resistance provided by introducing active sites on Co-based catalysts decreased as follows: Mn sites > Co sites > Cu sites > Ni sites. MCo2O4 NAs, with predominantly exposed {110} surfaces, showed higher catalytic activity than catalysts with exposed {111} surfaces. This study suggests that the as-prepared MnCo2O4 NAs anchored on 3D Ni foam with remarkable moisture resistance have potential applications in CO oxidation.
Tags
•
Formaldehyde [archived]
2017-2018 LitSearch
LHP MOA
Search Update
WOS
•
IRIS Formaldehyde (Inhalation) [Final 2024]
Literature Indexing
WoS
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity