Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
4564855
Reference Type
Journal Article
Title
Hybrid Randomly Electrospun Poly(lactic-co-glycolic acid):Poly(ethylene oxide) (PLGA:PEO) Fibrous Scaffolds Enhancing Myoblast Differentiation and Alignment
Author(s)
Evrova, O; Hosseini, V; Milleret, V; Palazzolo, G; Zenobi-Wong, M; Sulser, T; Buschmann, J; Eberli, D
Year
2016
Is Peer Reviewed?
1
Journal
ACS Applied Materials & Interfaces
ISSN:
1944-8244
EISSN:
1944-8252
Volume
8
Issue
46
Page Numbers
31574-31586
Language
English
PMID
27726370
DOI
10.1021/acsami.6b11291
Web of Science Id
WOS:000388913900012
Abstract
Cellular responses are regulated by their microenvironments, and engineered synthetic scaffolds can offer control over different microenvironment properties. This important relationship can be used as a tool to manipulate cell fate and cell responses for different biomedical applications. We show for the first time in this study how blending of poly(ethylene oxide) (PEO) to poly(lactic-co-glycolic acid) (PLGA) fibers to yield hybrid scaffolds changes the physical and mechanical properties of PLGA fibrous scaffolds and in turn affects cellular response. For this purpose we employed electrospinning to create fibrous scaffolds mimicking the basic structural properties of the native extracellular matrix. We introduced PEO to PLGA electrospun fibers by spinning a blend of PLGA:PEO polymer solutions in different ratios. PEO served as a sacrificial component within the fibers upon hydration, leading to pore formation in the fibers, fiber twisting, increased scaffold disintegration, and hydrophilicity, decreased Young's modulus, and significantly improved strain at break of initially electrospun scaffolds. We observed that the blended PLGA:PEO fibrous scaffolds supported myoblast adhesion and proliferation and resulted in increased myotube formation and self-alignment, when compared to PLGA-only scaffolds, even though the scaffolds were randomly oriented. The 50:50 PLGA:PEO blended scaffold showed the most promising results in terms of mechanical properties, myotube formation, and alignment, suggesting an optimal microenvironment for myoblast differentiation from the PLGA:PEO blends tested. The explored approach for tuning fiber properties can easily extend to other polymeric scaffolds and provides a valuable tool to engineer fibrillar microenvironments for several biomedical applications.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity