Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
4666408
Reference Type
Journal Article
Title
High strain extensional rheometry of polymer melts: Revisiting and improving the Meissner design
Author(s)
Andrade, RJ; Harris, P; Maia, JM
Year
2014
Is Peer Reviewed?
Yes
Journal
Journal of Rheology
ISSN:
0148-6055
Volume
58
Issue
4
Page Numbers
869-890
DOI
10.1122/1.4875349
Web of Science Id
WOS:000339141600003
Abstract
A new extensional rheometer limited in achievable strain only by sample rupture is presented. The rheometer is based on the Meissner design of two pairs of counter-rotating rollers pulling a sample of fixed length but is small enough to fit inside the oven of a standard rotational rheometer and thus is dubbed the Meissner Extensional Rheometry Accessory (MERA). The true strain rate is calculated by visually accessing the sample during deformation using a high-speed digital camera. Extensional experiments were performed on three materials representing a wide range expected rheological behavior, a styrene-butadiene rubber blend, a linear polystyrene, and a branched low-density polyethylene. The MERA was able to accurately replicate the results of the well-known Sentmanat extensional rheometer (SER) design in terms of onset of strain-hardening and absolute transient extensional viscosity values. However, due to its design, it was possible to achieve homogeneous extensional flow up to real Hencky strains in excess of 8, which corresponds to a linear stretch in excess of 3000. By comparison, the SER is limited to one drum revolution, which corresponds to a Hencky strain of 3.5-4.0 or a maximum linear stretch of approximately 50. Previously the highest Hencky deformations reported in the literature are for the filament stretching extensional rheometer and Rheometric Scientific RME apparatus and in both cases approach 7, which corresponds to a linear stretch of approximately 1000. (C) 2014 The Society of Rheology.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity