Health & Environmental Research Online (HERO)

Print Feedback Export to File
Journal Article 
Raw and waste plant materials as sources of fungi with epoxide hydrolase activity. Application to the kinetic resolution of aryl and alkyl glycidyl ethers 
Dolcet, M; Torres, M; Canela-Garayoa, R 
Biocatalysis and Biotransformation
ISSN: 1024-2422 
The by-products of olive oil production can be used as sources of microbial strains. Penicillium sp., Aspergillus terreus, Penicillium aurantiogriseum, Aspergillus tubingensis and Aspergillus niger were selected on the basis of their epoxide-hydrolyzing activity towards racemic rac-glycidyl phenyl ether. We studied the effect on enzymatic activity of adding styrene oxide to the growth medium. It induced the biosynthesis of epoxide hydrolases and reduced cell growth. The resolution capacity of the five fungi was tested on rac-glycidyl phenyl ether, rac-benzyl glycidyl ether, rac-1,2-epoxyhexane and rac-1,2-epoxyoctane. The resolution of rac-glycidyl phenyl ether by A. niger, rac-benzyl glycidyl ether by P. aurantiogriseum and A. terreus, rac-1,2-epoxyhexane by A. tubingensis and rac-1,2-epoxyoctane by A. terreus provided (S)-3-phenoxy-1,2-propanediol (45.1% yield, 51.4% ee), (R)-3-benzyloxy-1,2-propanediol (40.8% yield, 43.3% ee), (S)-3-benzyloxy1,2-propanediol (45.4% yield, 45.6% ee), (R)-1,2-hexanediol (70.4% yield, 24.4% ee) and (R)-1,2-octanediol (21.4% yield, 27.5% ee), respectively. The (R)-enantiopreference of the epoxide hydrolases from P. aurantiogriseum is unprecedented. 
Aliphatic epoxides; aromatic epoxides; epoxide hydrolases; kinetic resolution; olive oil mill wastes 
• 1,2-Hexanediol
     Literature search
          Human Health
               WOS (private)
               WOS (private)
          Environmental Hazard
               WOS (private)