Health & Environmental Research Online (HERO)


Print Feedback Export to File
4696994 
Journal Article 
Benchmark Calculations of Absolute Reduction Potential of Ferricinium/Ferrocene Couple in Nonaqueous Solutions 
Namazian, M; Lin, CY; Coote, ML 
2010 
Yes 
Journal of Chemical Theory and Computation
ISSN: 1549-9618
EISSN: 1549-9626 
2721-2725 
English 
High-level ab initio molecular orbital theory is used to obtain benchmark values for the ferricenium/ferrocene (Fc(+)/Fc) couple, the IUPAC recommended reference electrode for nonaqueous solution. The gas-phase ionization energy of ferrocene is calculated using the high-level composite method, G3(MP2)-RAD, and two higher-level variants of this method. These latter methods incorporate corrections for core correlation and, in the case of the highest level considered, use (RO)CCSD(T)/6-311+G(d,p) in place of (RO)CCSD(T)/6-31G(d) as the base level of theory. All methods provide good agreement with one another and the corresponding experimental values. Solvation energies have been calculated using PCM, CPCM, SMD, and COSMO-RS. Using G3(MP2)-RAD-Full-TZ gas-phase energies and COSMO-RS solvation energies, the absolute redox potentials of the Fc(+)/Fc couple have been calculated as 4.988, 4.927, and 5.043 V in acetonitrile, 1,2-dichloroethane, and dimethylsulfoxide solutions, respectively.