Health & Environmental Research Online (HERO)


Print Feedback Export to File
4711410 
Journal Article 
Sustainable Thermoplastic Elastomers Derived from Fatty Acids 
Wang, Shu; Kesava, SV; Gomez, ED; Robertson, ML 
2013 
Macromolecules
ISSN: 0024-9297
EISSN: 1520-5835 
AMER CHEMICAL SOC 
WASHINGTON 
46 
18 
7202-7212 
Vegetable oils are an attractive source for polymers due to their low cost, abundance, annual renewability, and ease of functionalization. Stearyl and lauryl acrylate, derived from vegetable oils such as soybean, coconut, and palm kernel oil, have been polymerized through reversible addition-fragmentation chain transfer polymerization, resulting in poly(styrene-b-(lauryl acrylate-co-stearyl acrylate)-b-styrene) (SAS) triblock copolymers. Varying the length of the side chain on the polyacrylate midblock (C18 and C12 in stearyl and lauryl acrylate repeat units, respectively) is a convenient tool for tuning the physical properties of the triblock copolymers. The SAS triblock copolymers exhibit properties appropriate for thermoplastic elastomer (TPE) applications. Small-angle X-ray scattering and transmission electron microscopy experiments have elucidated the microphase-separated morphology of the SAS triblock copolymers, consistent with a spherical morphology lacking long-range order. The physical properties of the polymers can be readily tuned by varying the acrylate midblock composition, including the melting temperature, viscosity, and triblock copolymer tensile properties. Tensile testing reveals elastomeric behavior with high elongation at break. Surprisingly, the order-disorder transition temperature of the triblock copolymer is not dependent on the acrylate composition in the midblock. This indicates that the acrylate composition can be used as a tool to manipulate the physical properties of the triblock copolymers without affecting the order-disorder transition temperature, or processing temperature, of the TPEs.