Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
4754047
Reference Type
Journal Article
Title
Metal Substitution Modulates the Reactivity and Extends the Reaction Scope of Myoglobin Carbene Transfer Catalysts
Author(s)
Sreenilayam, G; Moore, EJ; Steck, V; Fasan, R
Year
2017
Is Peer Reviewed?
1
Journal
Advanced Synthesis & Catalysis
ISSN:
1615-4150
EISSN:
1615-4169
Volume
359
Issue
12
Page Numbers
2076-2089
Language
English
PMID
29606929
DOI
10.1002/adsc.201700202
Web of Science Id
WOS:000403567500007
Abstract
Engineered myoglobins have recently emerged as promising scaffolds for catalyzing carbene-mediated transformations. In this work, we investigated the effect of altering the metal center and its first-sphere coordination environment on the carbene transfer reactivity of myoglobin. To this end, we first established an efficient protocol for the recombinant expression of myoglobin variants incorporating metalloporphyrins with non-native metals, including second- and third-row transition metals (ruthenium, rhodium, iridium). Characterization of the cofactor-substituted myoglobin variants across three different carbene transfer reactions (cyclopropanation, N-H insertion, S-H insertion) revealed a major influence of the nature of metal center, its oxidation state and first-sphere coordination environment on the catalytic activity, stereoselectivity, and/or oxygen tolerance of these artificial metalloenzymes. In addition, myoglobin variants incorporating manganese- or cobalt-porphyrins were found capable of catalyzing an intermolecular carbene C-H insertion reaction involving phthalan and ethyl α-diazoacetate, a reaction not supported by iron-based myoglobins and previously accessed only using iridium-based (bio)catalysts. These studies demonstrate how modification of the metalloporphyrin cofactor environment provides a viable and promising strategy to enhance the catalytic properties and extend the reaction scope of myoglobin-based carbene transfer catalysts.
Tags
IRIS
•
Cobalt
LitSearch: January 2008 - August 2018
PubMed
WoS
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity