Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
4836444
Reference Type
Journal Article
Title
A High Efficacy Self-Charging MoSe2 Solid-State Supercapacitor Using Electrospun Nanofibrous Piezoelectric Separator with Ionogel Electrolyte
Author(s)
Pazhamalai, P; Krishnamoorthy, K; Mariappan, VK; Sahoo, S; Manoharan, S; Kim, SJae
Year
2018
Volume
5
Issue
12
DOI
10.1002/admi.201800055
Web of Science Id
WOS:000436103900008
Abstract
Self-charging supercapacitor power cell (SCSPC) received much attention for harvesting and storing energy in an integrated device, which paves the way for developing maintenance free autonomous power systems for various electronic devices. In this work, a new type of SCSPC device is fabricated comprising 2D molybdenum di-selenide (MoSe2) as an energy storing electrode with polyvinylidene fluoride-co-hexafluoropropylene/tetraethylammonium tetrafluoroborate (PVDF-co-HFP/TEABF(4)) ion gelled polyvinylidene fluoride/sodium niobate (PVDF/NaNbO3) as the piezopolymer electrolyte. The fabricated SCSPC delivers a specific capacitance of 18.93 mF cm(-2) with a specific energy of 37.90 mJ cm(-2) at a specific power density of 268.91 mu W cm(-2) obtained at a constant discharge current of 0.5 mA. The MoSe2 SCSPC device can be self-charged with the aid of mechanical deformation induced using the applied compressive force, thus making it harvest and store energy. The MoSe2 SCSPC device can be charged up to a maximum of 708 mV under a compressive force of 30 N in 100 s, and the mechanism of charge-storage is discussed in detail. The experimental findings of this work demonstrate the high efficiency of the fabricated MoSe2 SCSPC device, which can provide new insights for developing sustainable power sources for the next generation wearable electronic applications.
Keywords
electrospinning; energy storage; MoSe2 nanosheets; piezopolymer separator; self-charging supercapacitors
Tags
IRIS
•
Molybdenum
Litsearch 2018
WOS
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity