Health & Environmental Research Online (HERO)


Print Feedback Export to File
4846099 
Journal Article 
A simple synthesis method to prepare a molybdenum oxide hole-transporting layer for efficient polymer solar cells 
Li, Y; Yu, H; Huang, X; Wu, Z; Chen, M 
2017 
RSC Advances
EISSN: 2046-2069 
13 
7890-7900 
We report a simple synthetic method to prepare amorphous molybdenum oxide (p-MoO3) using a favorably stable peroxomolybdic acid organosol as the precursor solution prepared by an ultrasonic reaction for the first time. The favorably smooth and dense surface morphology of the p-MoO3 layers are obtained under 150 degrees C thermal treatment with good optical properties and a high work function (W-F) of 5.26 eV. During the annealing treatment two different oxidation states of Mo ions are observed with increasing the annealing temperature to 150 degrees C and 200 degrees C. The best performance of the P3HT:PC71BM devices with p-MoO3 anode buffer layers has been achieved under 150 degrees C treatment with a power conversion efficiency (PCE) of 4.02%, a V-OC of 0.59 V, a J(SC) of 10.70 mA cm(-2), and a FF of 63.7%, superior to the corresponding PEDOT:PSS modified devices. Furthermore, the performance of the PTB7:PC71BM devices with the annealed p-MoO3 buffer layers has also been dramatically improved with the best performance parameters of a PCE of 8.46%, a V-OC of 0.73, a J(SC) of 17.02 mA cm(-2), a FF of 68.1% for 150 degrees C. The improved performance of the devices originates from the following factors; (i) the favorable and compact surface morphology of the annealed p-MoO3 films leading to a higher rectification ratio and lower leakage current. (ii) The formation of oxygen vacancies and the growing Mo5+ cation leading to the change of W-F under the annealing treatment. The highest W-F of 5.26 eV for 150 degrees C treatment influences the built-in electric field of the devices with the photocurrent being extracted efficiently at a short-circuit. 
IRIS
• Molybdenum
     Litsearch 2018
          WOS