Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
4849617
Reference Type
Journal Article
Title
Direct Synthesis of NiCo2O4 Nanoneedles and MoS2 Nanoflakes Grown on 316L Stainless Steel Meshes by Two Step Hydrothermal Method for HER
Author(s)
Li Dan; Li Yang; Chen Rongsheng; Ni Hongwei
Year
2018
Is Peer Reviewed?
Yes
Journal
Jinshu Xuebao
ISSN:
0412-1961
Volume
54
Issue
8
Page Numbers
1179-1186
DOI
10.11900/0412.1961.2018.00001
Web of Science Id
WOS:000440832400012
Abstract
The synthesis of nanostructures catalytic electrode for hydrogen evolution reaction (HER) plays an important role in national economy such as chlor-alkali industry, chemical power supply and fuel cell. Electro-splitting of water powered by electric energy has attracted extensive attention because this process can convert electric energy into chemical energy for easier storage and delivery. In this work, a facile and direct synthesis of NiCo2O4 nanoneedles and MoS2 nanoflakes grown on 316L stainless steel meshes substrate by two step hydrothermal method was reported. Initially MoS2 nanoflakes grown on the stainless steel (SS) meshes, and then NiCo2O4 nanoneedles were grown on MoS2/SS meshes at optimum conditions using hydrothermal method. The prepared nanostructures were characterized by SEM, TEM and XRD. Then a three-electrode system was used to test the property of HER. The results show that the as-prepared electrode exhibits good catalytic behavior towards HER. The onset overpotential and Tafel slope are 65 mV and 108 mV/dec respectively. When the current density reaches 100 mA/cm(2), the overpotential is 219.6 mV. Furthermore, the composite structure exhibits good cycle stability in the same experimental conditions.
Keywords
316L stainless steel mesh; hydrothermal; molybdenum sulfide; cobalt nickel oxide; hydrogen evolution reaction (HER)
Tags
IRIS
•
Molybdenum
Litsearch 2018
WOS
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity