Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
488170
Reference Type
Journal Article
Title
Prediction of binding modes for ligands in the cytochromes p450 and other heme-containing proteins
Author(s)
Kirton, SB; Murray, CW; Verdonk, ML; Taylor, RD
Year
2005
Is Peer Reviewed?
1
Journal
Proteins: Structure, Function, and Genetics
ISSN:
0887-3585
EISSN:
1097-0134
Volume
58
Issue
4
Page Numbers
836-844
Language
English
PMID
15651036
DOI
10.1002/prot.20389
Abstract
The cytochromes P450 (P450s) are a family of heme-containing monooxygenase enzymes involved in a variety of functions, including the metabolism of endogenous and exogenous substances in the human body. During lead optimization, and in drug development, many potential drug candidates are rejected because of the affinity they display for drug-metabolising P450s. Recently, crystal structures of human enzymes involved in drug metabolism have been determined, significantly augmenting the prospect of using structure-based design to modulate the binding and metabolizing properties of compounds against P450 proteins. An important step in the application of structure-based metabolic optimization is the accurate prediction of docking modes in heme binding proteins. In this paper we assess the performance of the docking program GOLD at predicting the binding mode of 45 heme-containing complexes. We achieved success rates of 64% and 57% for Chemscore and Goldscore respectively; these success rates are significantly lower than the value of 79% observed with both scoring functions for the full GOLD validation set. Re-parameterization of metal-acceptor interactions and lipophilicity of planar nitrogen atoms in the scoring functions resulted in a significant increase in the percentage of successful dockings against the heme binding proteins (Chemscore 73%, Goldscore 65%). The modified scoring functions will be useful in docking applications on P450 enzymes and other heme binding proteins. (C) 2005 Wiley-Liss, Inc.
Keywords
docking; scoring functions; cytochrome P450; heme proteins; nitric-oxide synthase; arthromyces-ramosus peroxidase; cambridge; structural database; crystal-structure; angstrom resolution; genetic; algorithm; flexible docking; crystallographic analysis; cyp2c19; polymorphism; automated docking
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity