Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
4886000
Reference Type
Journal Article
Title
Toxicity of Hexamoll(®) DINCH(®) following intravenous administration
Author(s)
David, RM; White, RD; Larson, MJ; Herman, JK; Otter, R
Year
2015
Is Peer Reviewed?
1
Journal
Toxicology Letters
ISSN:
0378-4274
EISSN:
1879-3169
Publisher
Elsevier Ireland Ltd
Volume
238
Issue
2
Page Numbers
100-109
Language
English
PMID
26211741
DOI
10.1016/j.toxlet.2015.07.013
Web of Science Id
WOS:000360940100005
URL
http://www.sciencedirect.com/science/article/pii/S0378427415300175
Exit
Abstract
Alternative plasticizers to di(2-ethylhexyl) phthalate (DEHP) for blood bags have been sought for many years. Cyclohexane-1,2-dicarboxylic acid, diisononylester (Hexamoll(®) DINCH(®)) is an alternative that has been evaluated in preliminary studies for compatibility and efficacy to preserve whole blood. While Hexamoll(®) DINCH(®) has an extensive database for mammalian toxicity via oral administration, data were needed to evaluate toxicity from intravenous (IV) administration to support the use of the plasticizer Hexamoll(®) DINCH(®) in blood bags. A series of studies was performed by slow IV injection or IV infusion of Hexamoll(®) DINCH(®), a highly viscous, hydrophobic substance, suspended in Intralipid(®) 20% (20% intravenous fat emulsion). Rats were injected once, followed by 14 days of recovery; injected daily for 5 days followed by 5 days of recovery, or infused for 29 days (4h/day) followed by 14 days of recovery. Dose levels were 0, 62, 125, and 250-300mg/kg body weight/day. These dose levels represent the limits of suspension and far exceed any anticipated exposures from migration out of plasticized blood bags. Animals were observed for signs of toxicity; body weight and feed consumption were measured; blood collected for clinical chemistry and hematology; and tissues collected and processed for histopathology. Special emphasis was placed on evaluating endpoints and tissues that are commonly associated with plasticizer exposure in rodents. Urine was collected during the 4-week study to quantify urinary metabolites of Hexamoll(®) DINCH(®). The results of the studies indicate that no substance-related toxicity occurred: no effects on behavior, no effects on organ weight, no effect on serum chemistry including thyroid hormones; and no effect on major organs, especially no testicular toxicity and no indication for peroxisome proliferation in the liver. The only effects seen were petechia and granulomas related to dissipation of suspended Hexamoll(®) DINCH(®) in the aqueous environment of the blood. However, the results of metabolite analyses demonstrate that Hexamoll(®) DINCH(®) was bioavailable. Therefore, based on the lack of Hexamoll(®) DINCH(®)-related systemic toxicity with the exception of the physical limitations, the no-observed-adverse-effect level for parenterally administered Hexamoll(®) DINCH(®) is considered to be 300mg/kg bw/day.
Keywords
Cyclohexane-1,2-dicarboxylic acid, diisononylester (Hexamoll DINCH); Intravenous injection; Intravenous infusion
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity