Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
4924206
Reference Type
Journal Article
Title
Expression of the osteoblast differentiation factor RUNX2 (Cbfa1/AML3/Pebp2alpha A) is inhibited by tumor necrosis factor-alpha
Author(s)
Gilbert, L; He, X; Farmer, P; Rubin, J; Drissi, H; van Wijnen, AJ; Lian, JB; Stein, GS; Nanes, MS
Year
2002
Is Peer Reviewed?
Yes
Journal
Journal of Biological Chemistry
ISSN:
0021-9258
EISSN:
1083-351X
Volume
277
Issue
4
Page Numbers
2695-2701
Language
English
PMID
11723115
DOI
10.1074/jbc.M106339200
Web of Science Id
WOS:000173421500043
Abstract
The transcription factor RUNX2 (Cbfa1/AML3/Pebp2alphaA) is a critical regulator of osteoblast differentiation. We investigated the effect of the inflammatory cytokine tumor necrosis factor alpha (TNF) on the expression of RUNX2 because TNF is known to inhibit differentiation of osteoblasts from pluripotent progenitor cells. TNF treatment of fetal calvaria precursor cells or MC3T3-E1 clonal pre-osteoblastic cells caused a dose-dependent suppression of RUNX2 steady state mRNA as measured by reverse transcription-PCR. The IC(50) for TNF inhibition was 0.6 ng/ml. TNF suppression of RUNX2 mRNA was confirmed using Northern analysis. The effect of TNF was studied using isoform-specific primers that flanked unique regions of two major RUNX2 isoforms. TNF suppressed expression of the mRNA coding for the shorter MRIPV isoform by >90% while inhibiting expression of the mRNA for the longer MASNS isoform by 50%. RUNX2 nuclear content was evaluated by electrophoretic mobility shift assay using a rat osteocalcin promoter binding sequence as probe and by Western analysis. TNF reduced nuclear RUNX2 protein. Inhibition of new protein synthesis with cycloheximide failed to prevent TNF inhibition of RUNX2 mRNA, suggesting that a newly translated protein did not mediate the TNF effect. RUNX2 mRNA half-life was 1.8 h and reduced to 0.9 h by TNF. The effect of TNF on RUNX2 gene transcription was evaluated using a 0.6-kb RUNX2 promoter-luciferase reporter in MC3T3-E1 cells. TNF caused a dose-dependent inhibition of transcription to 50% of control values. The inhibitory effect of TNF was preserved with deletions to nucleotide -108 upstream of the translational start site; however, localization downstream of nucleotide -108 was obscured by loss of basal activity. Our results indicate that TNF regulates RUNX2 expression at multiple levels including destabilization of mRNA and suppression of transcription. The disproportionate inhibition of RUNX2 nuclear protein suggests that additional post-transcriptional mechanisms may be occurring. Suppression of RUNX2 by TNF may decrease osteoblast differentiation and inhibit bone formation in TNF excess states.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity