Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
5048179
Reference Type
Journal Article
Title
Resveratrol, a natural polyphenol, prevents chemotherapy-induced cognitive impairment: Involvement of cytokine modulation and neuroprotection
Author(s)
Shi, DD; Dong, CM; Ho, LC; Lam, CTW; Zhou, XD; Wu, EX; Zhou, ZJ; Wang, XM; Zhang, ZJ
Year
2018
Is Peer Reviewed?
1
Journal
Neurobiology of Disease
ISSN:
0969-9961
EISSN:
1095-953X
Volume
114
Page Numbers
164-173
Language
English
PMID
29534932
DOI
10.1016/j.nbd.2018.03.006
Web of Science Id
WOS:000431093800016
Abstract
Chemotherapy-induced cognitive impairment, also known as "chemobrain," is a common side effect. The purpose of this study was to examine whether resveratrol, a natural polyphenol that has nootropic effects, could prevent chemobrain and its underlying mechanisms. Mice received three injections of docetaxel, adriamycin, and cyclophosphamide (DAC) in combination, a common chemotherapy regimen, at two-day intervals within one week. Resveratrol (50 and 100 mg/kg per day) was orally administered for three weeks, beginning one week before the DAC treatment. Water maze test and manganese-enhanced magnetic resonance imaging were used to evaluate animals' cognitive performance and brain neuronal activity, respectively. Blood and brain tissues were collected for measurement of cytokines, cytokine regulators, and biomarkers for neuroplasticity. DAC treatment produced a striking cognitive impairment. Cotreatment with 100 mg/kg resveratrol ameliorated DAC-induced cognitive impairment and decreases in prefrontal and hippocampal neuronal activity. Mice co-treated with both doses of resveratrol displayed significantly lower levels of the proinflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), but markedly higher levels of the anti-inflammatory cytokines IL-4 and IL-10 in several sera and brain tissues than those co-treated with vehicle. Resveratrol modulated the cytokine-regulating pathway peroxisome proliferator activated receptor (PPAR)-γ/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and protected against DAC-induced decreases in the expression of the neuroplasticity biomarkers, brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B (TrkB), amino acid neurotransmitter receptors, and calmodulin-dependent protein kinase II (CaMKII). These results demonstrate the efficacy of resveratrol in preventing chemobrain and its association with cytokine modulation and neuroprotection.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity