Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
5064701
Reference Type
Journal Article
Title
Robust Iridium Coordination Polymers: Highly Selective, Efficient, and Recyclable Catalysts for Oxidative Conversion of Glycerol to Potassium Lactate with Dihydrogen Liberation
Author(s)
Sun, Z; Liu, Y; Chen, J; Huang, C; Tu, Tao
Year
2015
Volume
5
Issue
11
Page Numbers
6573-6578
DOI
10.1021/acscatal.5b01782
Web of Science Id
WOS:000364441300038
Abstract
Along with the rapid expansion of the biodiesel industry to deal with the world energy crisis, inexpensive glycerol is also produced in large scale as the main byproduct in biodiesel production via transesterification. Much attention has been paid to the development of environmentally benign technologies for the transformation of glycerol to valuable DL-lactic acid and its derivatives. Herein, a series of NHC-Ir coordination polymers were readily synthesized via reaction of some structurally rigid bis-benzimidazolium salts with iridium precursors under alkaline conditions and were successfully applied as robust self-supported catalysts in the oxidative dehydrogenation of glycerol to potassium lactate with dihydrogen liberation. Extremely high activity and selectivity were attained in open air under the mild reaction conditions even with ppm-level loadings of the catalysts, which were readily recovered after reaction by simple filtration and reused for up to 31 runs without obvious loss of activity or selectivity. Probably owing to the effective suppression of inactive binuclear iridium species in a homogeneously catalyzed reaction, the catalysts assembled via self-supported strategy exhibited high selectivity and productivity for potassium lactate, with up to 1.24 x 10(5) turnover numbers (TON) being attained even in large-scale reactions of neat glycerol at an elevated temperature. The high catalytic activity, recyclability, and scalability of the robust self-supported catalysts highlight their potential toward the development of practical technologies for transformation of glycerol to value-added chemicals.
Keywords
coordination assembly; iridium; lactate; oxidative dehydrogenation; self-support catalyst
Tags
Other
•
Third Biofuels Report to Congress
50% to 100%
50% to 100%
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity