Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
5088556
Reference Type
Journal Article
Title
Supersaturation of calcium citrate as a mechanism behind enhanced availability of calcium phosphates by presence of citrate
Author(s)
Garcia, AC; Vavrusova, M; Skibsted, LH
Year
2018
Is Peer Reviewed?
Yes
Journal
Food Research International
ISSN:
0963-9969
EISSN:
1873-7145
Volume
107
Page Numbers
195-205
Language
English
PMID
29580478
DOI
10.1016/j.foodres.2018.02.020
Abstract
Dissolution of amorphous calcium phosphate (ACP) in aqueous citrate at varying pH has been studied with perspective of increasing availability of calcium from sidestreams of whey protein, lactose and/or cheese production or on development of new functional foods. ACP formed as an initial precipitate in 0.10 mol L-1 equimolar aqueous calcium chloride, sodium citrate, and sodium hydrogenphosphate was used as model for mineral residues formed during milk processing. Upon acidification of the ACP suspension by hydrochloric acid decreasing pH from 6.5 to 4.5, the transformations of ACP occurred through an 8 h period of supersaturation prior to a slow precipitation of calcium citrate tetrahydrate. This robust supersaturation, which may explain increased availability of calcium phosphates in presence of citrate, presented a degree of supersaturation of 7.1 and was characterized by precipitation rates for 0.10 mol L-1 equimolar aqueous calcium chloride, sodium hydrogencitrate, and sodium hydrogenphosphate with pH 5.5, and for 0.10 mol L-1 equimolar aqueous calcium chloride, sodium hydrogencitrate, and sodium dihydrogenphosphate with pH 4.1, with a degree of supersaturation of 2.7. The crystallization processes were similar according to Avrami's model with a half-life for precipitation of approximately 5 h independent of the degree of supersaturation. Ion speciation based on measurement of pH, and total concentrations of calcium, phosphate and citrate, and of conductivity and calcium ion activity during precipitation indicates a low driving force for precipitation with calcium citrate complex dominating at pH 5.5 and calcium hydrogencitrate complex dominating at pH 4.1. Calcium hydrogencitrate is suggested to be the species involved in the crystal growth followed by solid state transformation to calcium citrate tetrahydrate.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity