Health & Environmental Research Online (HERO)


Print Feedback Export to File
5088807 
Journal Article 
New yellow-emitting Whitlockite-type structure Sr(1.75)Ca(1.25)(PO4)2:Eu(2+) phosphor for near-UV pumped white light-emitting devices 
Ji, H; Huang, Z; Xia, Z; Molokeev, MS; Atuchin, VV; Fang, M; Huang, S 
2014 
Yes 
Inorganic Chemistry
ISSN: 0020-1669
EISSN: 1520-510X 
53 
10 
5129-5135 
English 
New compound discovery is of interest in the field of inorganic solid-state chemistry. In this work, a whitlockite-type structure Sr1.75Ca1.25(PO4)2 newly found by composition design in the Sr3(PO4)2-Ca3(PO4)2 join was reported. Crystal structure and luminescence properties of Sr1.75Ca1.25(PO4)2:Eu(2+) were investigated, and the yellow-emitting phosphor was further employed in fabricating near-ultraviolet-pumped white light-emitting diodes (w-LEDs). The structure and crystallographic site occupancy of Eu(2+) in the host were identified via X-ray powder diffraction refinement using Rietveld method. The Sr1.75Ca1.25(PO4)2:Eu(2+) phosphors absorb in the UV-vis spectral region of 250-430 nm and exhibit an intense asymmetric broadband emission peaking at 518 nm under λex = 365 nm which is ascribed to the 5d-4f allowed transition of Eu(2+). The luminescence properties and mechanism are also investigated as a function of Eu(2+) concentration. A white LED device which is obtained by combining a 370 nm UV chip with commercial blue phosphor and the present yellow phosphor has been fabricated and exhibit good application properties.