Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
5089680
Reference Type
Journal Article
Title
Preliminary in vivo magnetofection data using magnetic calcium phosphate nanoparticles immobilizing DNA and iron oxide nanocrystals
Author(s)
Shubhra, QTH; Oyane, A; Nakamura, M; Puentes, S; Marushima, A; Tsurushima, H
Year
2018
Journal
Data in Brief
ISSN:
2352-3409
Volume
18
Page Numbers
1696-1701
Language
English
PMID
29904669
DOI
10.1016/j.dib.2018.04.058
Abstract
The data reported herein are in association with our research article entitled "Rapid one-pot fabrication of magnetic calcium phosphate nanoparticles immobilizing DNA and iron oxide nanocrystals using injection solutions for magnetofection and magnetic targeting" (Shubhra et al. 2017) [1]. This article reports morphological and gene delivery (in vitro and preliminary in vivo) data of those calcium phosphate (CaP) naonparticles (NPs) with various iron oxide (IO) contents, named as CaP-Fe(1), CaP-Fe(2), CaP-Fe(3), CaP-Fe(4), and CaP-Fe(5), which were prepared via coprecipitation in supersaturated CaP solutions with nominal Fe concentrations 6.97, 13.94, 27.87, 55.74, and 139.35 μg/mL, respectively. Morphological data of four different NPs: CaP-Fe(1), CaP-Fe(2), CaP-Fe(4), and CaP-Fe(5) are shown here. Data of the luciferase reporter gene expression assay show the effects of the coprecipitation time and the dosage of the CaP-Fe(3) NPs on gene expression levels of CHO-K1 cells transfected by the NPs without external magnetic field. It is demonstrated using digital and microscopic images that the CaP-Fe(3) NPs localize near the periphery of the external magnet that was placed under the cell culture plate. Using the CaP-Fe(3) NPs, animal experiments were conducted to obtain preliminary in vivo magnetofection data.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity