Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
5161677
Reference Type
Journal Article
Title
Ultrafast proton transport in sub-1-nm diameter carbon nanotube porins
Author(s)
Tunuguntla, RH; Allen, FI; Kim, K; Belliveau, A; Noy, A
Year
2016
Is Peer Reviewed?
1
Journal
Nature Nanotechnology
ISSN:
1748-3387
EISSN:
1748-3395
Volume
11
Issue
7
Page Numbers
639-644
Language
English
PMID
27043198
DOI
10.1038/nnano.2016.43
Web of Science Id
WOS:000379506600016
Abstract
Proton transport plays an important role in many biological processes due to the ability of protons to rapidly translocate along chains of hydrogen-bonded water molecules. Molecular dynamics simulations have predicted that confinement in hydrophobic nanochannels should enhance the rate of proton transport. Here, we show that 0.8-nm-diameter carbon nanotube porins, which promote the formation of one-dimensional water wires, can support proton transport rates exceeding those of bulk water by an order of magnitude. The transport rates in these narrow nanotube pores also exceed those of biological channels and Nafion. With larger 1.5-nm-diameter nanotube porins, proton transport rates comparable to bulk water are observed. We also show that the proton conductance of these channels can be modulated by the presence of Ca(2+) ions. Our results illustrate the potential of small-diameter carbon nanotube porins as a proton conductor material and suggest that strong spatial confinement is a key factor in enabling efficient proton transport.
Tags
PFAS
•
Nafion
Literature Search Update 12/2020
PubMed
Literature Search 6/2019
PubMed
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity