Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
5205788
Reference Type
Journal Article
Title
HAMSCs/HBMSCs coculture system ameliorates osteogenesis and angiogenesis against glucolipotoxicity
Author(s)
Zhang, C; Du, Y; Yuan, H; Jiang, F; Shen, M; Wang, Y; Wang, R
Year
2018
Is Peer Reviewed?
Yes
Journal
Biochimie
ISSN:
0300-9084
EISSN:
1638-6183
Volume
152
Page Numbers
121-133
Language
English
PMID
30103897
DOI
10.1016/j.biochi.2018.06.028
Web of Science Id
WOS:000443637700012
Abstract
Osteoporosis and vascular lesions induced by glucolipotoxicity are common complications of diabetes mellitus (DM). In order to deal with these complications, we designed a new therapeutic strategy, i.e. coculture system containing human amnion-derived mesenchymal stem cells (HAMSCs) and human bone marrow mesenchymal stem cells (HBMSCs). Two in vitro coculture models, transwell and mixed cocultures, were proposed for 7 days with variable HAMSCs: HBMSCs ratios. Then, supernatant from each coculture was used to reverse the deficiency of HBMSCs and human umbilical vein endothelial cells (HUVECs) impaired by high glucose and palmitic acid (GP). We found that glucolipotoxicity caused by GP remarkably inhibited cell proliferation, osteogenic differentiation and superoxide dismutase (SOD) activity, as well as induced the reactive oxygen species (ROS) level in HBMSCs. Meanwhile, glucolipotoxicity suppressed cell proliferation, tube formation capacity and angiogenic potential of HUVECs. Though, HAMSCs/HBMSCs coculture system reduced HBMSCs dysfunction by antioxidant properties and promoted angiogenesis in HUVECs. The mixed HAMSCs/HBMSCs coculture at the optimal ratio of 3/1 showed significantly greater cell proliferation, antioxidant properties, osteogenic and angiogenic differentiation than HBMSCs or HUVECs alone. In conclusion, the current coculture system of HAMSCs/HBMSCs can be a potential therapeutic material for advancing bone and vascular regeneration against DM-induced glucolipotoxicity.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity