Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
5216132
Reference Type
Journal Article
Title
Structure-function relationships of bovine pulmonary surfactant proteins: SP-B and SP-C
Author(s)
Takahashi, A; Waring, AJ; Amirkhanian, J; Fan, B; Taeusch, HW
Year
1990
Is Peer Reviewed?
1
Journal
Biochimica et Biophysica Acta
ISSN:
0006-3002
EISSN:
1878-2434
Volume
1044
Issue
1
Page Numbers
43-49
Language
English
PMID
2160285
DOI
10.1016/0005-2760(90)90216-k
Abstract
Pulmonary surfactant contains at least three unique proteins: SP-A, SP-B and SP-C. SP-B and SP-C from bovine surfactant are markedly hydrophobic and have molecular masses between 3 and 26 kDa. We identify surfactant proteins under nonreducing conditions on polyacrylamide gels with approximate molecular mass of 5, 14, 26 kDa (SP-5, 14, 26) when organic solvent-soluble material is eluted from a Sephadex LH-20 size exclusion column followed by separation on a high-performance reverse-phase chromatography system. These bands correspond to monomeric SP-C, oligomeric SP-C and oligomeric SP-B, respectively. Computer analysis (Eisenberg-hydrophobic moment) of sequences for these proteins suggests that SP-B contains surface-seeking amphiphilic segments. In contrast, SP-C resembles a more hydrophobic transmembrane anchoring peptide. Dispersions containing dipalmitoylphosphatidylcholine, phosphatidylglycerol, palmitic acid and multimeric SP-B and SP-C duplicate the surface activity of natural surfactant when assayed in a pulsating bubble surfactometer. We speculate that oligomers of SP-B and monomers and oligomers of SP-C may act cooperatively in affecting surfactant function. An important function of SP-B and SP-C may be to affect the ordering of surfactant lipids so that rates of transport of surfactant lipids to the hypophase surface in the alveoli are enhanced.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity