Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
5285134
Reference Type
Journal Article
Title
Cofacial boron dipyrromethene (Bodipy) dimers: synthesis, charge delocalization, and exciton coupling
Author(s)
Benniston, AC; Copley, G; Harriman, A; Howgego, D; Harrington, RW; Clegg, W
Year
2010
Is Peer Reviewed?
Yes
Journal
Journal of Organic Chemistry
ISSN:
0022-3263
EISSN:
1520-6904
Publisher
AMER CHEMICAL SOC
Location
WASHINGTON
Volume
75
Issue
6
Page Numbers
2018-2027
Language
English
PMID
20155975
DOI
10.1021/jo1000803
Web of Science Id
WOS:000275379200025
Abstract
A series of compounds containing two boron dipyrromethene (Bodipy) units has been synthesized and fully characterized in which the spacer between the two Bodipy groups is varied from dibenzothiophene (BD1), to dibenzofuran (BD2), to 9,9-dimethylxanthene (BD3), and finally to diphenyl ether (BD4 and BD5). For BD1-BD4 the Bodipy units adopt, to varying degrees, cofacial conformations that allow for systematic variations of both the mutual orientation and the mean separation of the two Bodipy residues. In the remaining dimer, BD5, the Bodipy units are well-separated and cannot come into close proximity. Single-crystal X-ray structures have been determined for BD1-BD3 and reveal that the "bite angle" between the two Bodipy residues decreases progressively along the series with individual values of 41.33(5) degrees, 36.95(6) degrees, and 8.57(3) degrees. Detailed (1)H and (19)F NMR studies for BD3 and BD4 show the methylene protons to be diastereotopic due to restricted rotation of the two Bodipy groups. For BD4 conformational rocking is invoked to explain the variable-temperature NMR spectra, whereby the methyl and methylene groups become inequivalent. Cyclic voltammetry indicates reversible oxidation and reduction of the Bodipy groups. However, the close proximity of the Bodipy groups in BD3 and BD4 results in two well-resolved waves in the anodic region, and slight splitting of the cathodic wave. Peak splitting is attributed to charge delocalization. Spectroelectrochemical measurements at a fixed oxidative potential reveal an optical intervalence charge-transfer (IVCT) absorption band. This IVCT band is attributed to electron exchange between the cofacially arranged neutral and mono-oxidized Bodipy units. Various levels of exciton coupling are observed for BD1-BD4, but not BD5 since here the Bodipy groups remain isolated.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity