Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
534958
Reference Type
Journal Article
Title
Fibrillin-1 misfolding and disease
Author(s)
Whiteman, P; Hutchinson, S; Handford, PA
Year
2006
Is Peer Reviewed?
Yes
Journal
Antioxidants & Redox Signaling
ISSN:
1523-0864
EISSN:
1557-7716
Volume
8
Issue
3-4
Page Numbers
338-346
Language
English
Abstract
Fibrillin-1 is a 350 kDa calcium-binding protein which assembles to form 10-12 nm microfibrils in the extracellular matrix (ECM). The structure of fibrillin-1 is dominated by two types of disulfide-rich motifs, the calcium-binding epidermal growth factor-like (cbEGF) and transforming growth factor beta binding protein-like (TB) domains. Disruption of fibrillin-1 domain structure and function contributes to the pathogenic mechanisms underlying two inherited diseases with very different etiologies: Marfan syndrome (MFS) and homocystinuria (HQ. MFS is a connective tissue disease caused by mutations in the fibrillin-1 gene FBN1. Many missense mutations cause variable degrees of fibrillin-1 domain misfolding, which may affect the delivery of fibrillin-1 to the ECM and/or its assembly into microribrils. HC is a metabolic disorder which affects methionine metabolism and results in raised serum levels of the highly reactive thiol-containing amino acid homocysteine. Patients with HC often exhibit ocular and skeletal defects resembling the MFS phenotype, suggesting that elevated homocysteine levels may lead to chemical reduction of disulfide bonds within fibrillin-1 domains resulting in the loss of native structure. Protein misfolding therefore is implicated in pathogenic mechanisms underlying MFS and HC.
Keywords
epidermal-growth-factor; factor-like domains; egf-like domains; calcium-binding; marfan-syndrome; extracellular microfibrils; structural consequences; integrin binding; factor modules; cell-adhesion
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity