Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
5375729
Reference Type
Journal Article
Title
Silane crosslinking of electrospun poly (lactic acid)/nanocrystalline cellulose bionanocomposite
Author(s)
Rahmat, M; Karrabi, M; Ghasemi, I; Zandi, M; Azizi, H
Year
2016
Is Peer Reviewed?
1
Journal
Materials Science and Engineering C: Materials for Biological Applications
ISSN:
0928-4931
EISSN:
1873-0191
Volume
68
Page Numbers
397-405
Language
English
PMID
27524034
DOI
10.1016/j.msec.2016.05.111
Abstract
Biodegradable nanofibrous mats fabricated by electrospinning are commonly used in tissue engineering, however, lack of essential mechanical properties of such nanofibers is a challenging issue. In this work, vinyltrimethoxysilane (VTMS) was grafted onto poly (lactic acid) (PLA) and the silane grafted PLA was subsequently applied in electrospinning process. Electrospun nanofibrous mats based on PLA/nanocrystalline cellulose (NCC) and PLA-g-silane/NCC nanocomposites were fabricated and immersed in hot water (70°C) for crosslinking of silane grafted PLA. It was found that introducing NCC to the samples cause to reduction in fiber diameter and the other hand the silane crosslinking of PLA increase the mean fiber diameter. DSC thermograms also revealed that silane grafting caused a reduction in mobility of polymer segments, and consequently reduction of crystallinity. On the contrary, the NCC in the PLA-g-silane samples effectively influenced the crystal nucleation, while in the PLA nanofibers the nucleation was lower. The impact of NCC on tensile strength enhancement of samples was notable. The results suggested that the chemical crosslinking remarkably improves the mechanical properties of PLA nanofibers. Furthermore, biocompatibility of such modified nanofibers was also evaluated through cytotoxicity results, therefore the modified PLA nanocomposite can be considered as a practical candidate for hard tissue engineering applications.
Tags
PFAS
•
PFAS 150
Literature Search August 2019
PubMed
ToxNet
Not prioritized for screening
(Heptafluoropropyl)trimethylsilane
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity