Health & Environmental Research Online (HERO)


Print Feedback Export to File
5408607 
Journal Article 
Centrifugally Spun Recycled PET: Processing and Characterization 
Vo, PP; Doan, HN; Kinashi, K; Sakai, W; Tsutsumi, N; Huynh, DP 
2018 
Polymers
ISSN: 2073-4360 
10 
English 
Centrifugal spinning, which is a high-productivity fiber fabrication technique, was used to produce a value-added product from recycled poly(ethylene terephthalate) (rPET). In the present study, rPET fibers, with fiber diameters ranging from submicron to micrometer in scale, were fabricated by spinning a solution of rPET in a mixture of dichloromethane and trifluoroacetic acid. The influence of the polymer solution concentration (the viscosity), the rotational speed of the spinneret, and the inner diameter of the needles on the formation and morphology and mechanical properties of the fibers were examined through scanning electron microscopy and using a tensile testing machine. The thermal behaviors of fibrous mats with various average diameters were also investigated through differential scanning calorimetry. The smoothest and smallest fibers, with an average diameter of 619 nm, were generated using an rPET solution of 10 wt % under a rotation speed of 15,000 rpm using needles having an inner diameter of 160 μm. The fibrous mats have an average tensile strength and modulus of 4.3 MPa and 34.4 MPa, respectively. The productivity and the mechanical properties indicate that centrifugal spinning is an effective technique to fabricate high-value product from rPET. 
PFAS
• PFAS 150
     Literature Search Update December 2020
          PubMed
     Literature Search August 2019
          PubMed
     Not prioritized for screening
     Trifluoroacetic acid