Health & Environmental Research Online (HERO)


Print Feedback Export to File
570424 
Journal Article 
Arctic sea ice trends and narwhal vulnerability 
Laidre, KL; Heide-Jørgensen, MP 
2005 
Yes 
Biological Conservation
ISSN: 0006-3207 
121 
509-517 
Conservation measures related to global climate change require that species vulnerability be incorporated into population risk models, especially for those that are highly susceptible to rapid or extreme changes due to specialized adaptation. In the case of Arctic cetaceans, effects of climate change on habitat and prey availability have been subject to intense speculation. Climate perturbations may have significant impacts on the fitness and success of this group, yet measuring these parameters for conservation purposes is complicated by remote and offshore preferences. The narwhal (Monodon monoceros) in Baffin Bay occupies a habitat where reversed (increasing) regional sea ice trends have been detected over 50 years. We used a combination of long-term narwhal satellite tracking data and remotely sensed sea ice concentrations to detect localized habitat trends and examine potential vulnerability. Spatial and temporal variability in the fraction of open water were examined on two narwhal wintering grounds between November and April, 1978-2001 using approximate sea ice concentrations derived from microwave SSMR/SSMI passive brightness temperatures. Less than 3% open water was available to narwhals between 15 January and 15 April, and reached minima of 0.5% open water at the end of March (125 km2 out of a 25,000 km2 area). Decreasing trends in the fraction of open water, together with increasing trends in interannual variability, were detected on both wintering grounds, significantly in northern Baffin Bay (-0.04% per year, SE 0.02). The limited number of leads and cracks available to narwhals during the winter, in combination with localized decreasing trends in open water and high site fidelity, suggests vulnerability to changes in Arctic sea ice conditions. Increasing risk of ice entrapments, many of which may go undetected in remote offshore areas, should be incorporated into population risk assessments as this may exceed the natural response capacity of the species. 
Arctic; Climate change; Narwhal; Global warming; Sea ice; Site fidelity; Risk assessment; Vulnerability