Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
572112
Reference Type
Journal Article
Title
Reliability and longitudinal change of detrital-zircon age spectra in the Snake River system, Idaho and Wyoming: An example of reproducing the bumpy barcode
Author(s)
Link, PK; Fanning, CM; Beranek, LP
Year
2005
Volume
182
Issue
1-4
Page Numbers
101-142
DOI
10.1016/j.sedgeo.2005.07.012
Abstract
Detrital-zircon age-spectra effectively define provenance in Holocene and Neogene fluvial sands from the Snake River system of the northern Rockies, U.S.A. SHRIMP U-Pb dates have been measured for forty-six samples (about 2700 zircon grains) of fluvial and aeolian sediment. The detrital-zircon age distributions are repeatable and demonstrate predictable longitudinal variation. By lumping multiple samples to attain populations of several hundred grains, we recognize distinctive, provenance-defining zircon-age distributions or "barcodes," for fluvial sedimentary systems of several scales, within the upper and middle Snake River system. Our detrital-zircon studies effectively define the geochronology of the northern Rocky Mountains. The composite detrital-zircon grain distribution of the middle Snake River consists of major populations of Neogene, Eocene, and Cretaceous magmatic grains plus intermediate and small grain populations of multiply recycled Grenville (~950 to 1300 Ma) grains and Yavapai-Mazatzal province grains (~1600 to 1800 Ma) recycled through the upper Belt Supergroup and Cretaceous sandstones. A wide range of older Paleoproterozoic and Archean grains are also present. The best-case scenario for using detrital-zircon populations to isolate provenance is when there is a point-source pluton with known age, that is only found in one location or drainage. We find three such zircon age-populations in fluvial sediments downstream from the point-source plutons: Ordovician in the southern Beaverhead Mountains, Jurassic in northern Nevada, and Oligocene in the Albion Mountains core complex of southern Idaho. Large detrital-zircon age-populations derived from regionally well-defined, magmatic or recycled sedimentary, sources also serve to delimit the provenance of Neogene fluvial systems. In the Snake River system, defining populations include those derived from Cretaceous Atlanta lobe of the Idaho batholith (80 to 100 Ma), Eocene Challis Volcanic Group and associated plutons (~45 to 52 Ma), and Neogene rhyolitic Yellowstone-Snake River Plain volcanics (~0 to 17 Ma). For first-order drainage basins containing these zircon-rich source terranes, or containing a point-source pluton, a 60-grain random sample is sufficient to define the dominant provenance. The most difficult age-distributions to analyze are those that contain multiple small zircon age-populations and no defining large populations. Examples of these include streams draining the Proterozoic and Paleozoic Cordilleran miogeocline in eastern Idaho and Pleistocene loess on the Snake River Plain. For such systems, large sample bases of hundreds of grains, plus the use of statistical methods, may be necessary to distinguish detrital-zircon age-spectra.
Keywords
Detrital zircon; Zircon-age spectra; Snake River, Idaho; Yellowstone hotspot; SHRIMP
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity