Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
5920899
Reference Type
Journal Article
Title
Revealing the constituents of Egypt's oldest beer using infrared and mass spectrometry
Author(s)
Farag, MA; Elmassry, MM; Baba, M; Friedman, R
Year
2019
Is Peer Reviewed?
1
Journal
Scientific Reports
EISSN:
2045-2322
Volume
9
Issue
1
Page Numbers
16199
Language
English
PMID
31700104
DOI
10.1038/s41598-019-52877-0
Abstract
Previous studies have shown that the Ancient Egyptians used malted wheat and barley as the main ingredients in beer brewing, but the chemical determination of the exact recipe is still lacking. To investigate the constituents of ancient beer, we conducted a detailed IR and GC-MS based metabolite analyses targeting volatile and non-volatile metabolites on the residues recovered from the interior of vats in what is currently the world's oldest (c. 3600 BCE) installation for large-scale beer production located at the major pre-pharaonic political center at Hierakonpolis, Egypt. In addition to distinguishing the chemical signatures of various flavoring agents, such as dates, a significant result of our analysis is the finding, for the first time, of phosphoric acid in high level probably used as a preservative much like in modern beverages. This suggests that the early brewers had acquired the knowledge needed to efficiently produce and preserve large quantities of beer. This study provides the most detailed chemical profile of an ancient beer using modern spectrometric techniques and providing evidence for the likely starting materials used in beer brewing.
Tags
PFAS
•
Expanded PFAS SEM (formerly PFAS 430)
Litsearch: September 2019
PubMed
Not prioritized for screening
3-(Perfluoroisopropyl)-(2E)-difluoropropenoic acid
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity