Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
5925312
Reference Type
Journal Article
Title
Hydrological response of small watersheds following the Southern California Painted Cave Fire of June 1990
Author(s)
Keller, EA; Valentine, DW; Gibbs, DR
Year
1997
Is Peer Reviewed?
Yes
Journal
Hydrological Processes
ISSN:
0885-6087
EISSN:
1099-1085
Volume
11
Issue
4
Page Numbers
401-414
DOI
10.1002/(SICI)1099-1085(19970330)11:4<401::AID-HYP447>3.0.CO;2-P
Web of Science Id
WOS:A1997WV04500005
Abstract
Following the Painted Cave Fire of 25 June 1990 in Santa Barbara, California which burned 1214 ha, an emergency watershed protection plan was implemented consisting of stream clearing, grade stabilizers and construction of debris basins. Research was initiated focusing on hydrological response and channel morphology changes on two branches of Maria Ygnacio Creek, the main drainage of the burned area. Research results support the hypothesis that the response of small drainage basins in chaparral ecosystems to wildfire is complex and flushing of sediment by fluvial processes is more likely than by high magnitude debris flows. During the winter of 1990-1991, 35-66 cm of rainfall and intensities up to 10 cm per hour for a five-minute period were recorded with a seasonal total of 100% of average (normal) rainfall (average = 63 cm/year). During the winter of 1991-1992, 48-74 cm of rainfall and intensities up to 8 cm per hour were recorded with a seasonal total of 115% of normal. Even though there was moderate rainfall on barren, saturated soils, no major debris flows occurred in burned areas. The winter of 1992-1993 recorded total precipitation of about 170% of normal, annual average intensities were relatively low and again no debris flows were observed. The response to winter storms in the first three years following the fire was a moderate but spectacular flushing of sediment, most of which was derived from the hillslopes upstream of the debris basins. The first significant storm and stream flow of the 1990-1991 winter was transport-limited resulting in large volumes of sediment being deposited in the channel of Maria Ygnacio Creek; the second storm and stream flow was sediment-limited and the channel scoured. Debris basins trapped about 23 000 m(3), the majority coming from the storm of 17-20 March 1991. Sediment transported downstream during the three winters following the fire and not trapped in the debris basins was eventually flushed to the estuarine reaches of the creeks below the burn area, where approximately 108 000 m(3) accumulated. Changes in stream morphology following the fire were dramatic as pools filled with sediment which greatly smoothed longitudinal and cross-sectional profiles. Major changes in channel morphology occur following a fire as sediment derived from the hillslope is temporarily stored in channels within the burned area. However, this sediment may quickly move downstream of the burned region, where it may accumulate reducing channel capacity and increasing the flood hazard. Ecological consequences of wildfire to the riparian zone of streams in the chaparral environment are virtually unknown, but must be significant as the majority of sediment (particularly gravel necessary for fish and other aquatic organisms) entering the system does so in response to fires. (C) 1997 by John Wiley & Sons, Ltd.
Keywords
channels; chaparral watersheds; hydrology; sedimentation; stream dynamics; wildfire
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity