Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
603594
Reference Type
Journal Article
Title
Depth-integrated, continuous estimates of metabolism in a clear-water lake
Author(s)
Coloso, JJ; Cole, JJ; Hanson, PC; Pace, ML
Year
2008
Is Peer Reviewed?
Yes
Journal
Canadian Journal of Fisheries and Aquatic Sciences
ISSN:
0706-652X
EISSN:
1205-7533
Volume
65
Issue
4
Page Numbers
712-722
Abstract
High-frequency dissolved oxygen (DO) measurements have been used for estimating gross primary production (GPP) and respiration (R) in lake ecosystems. Most researchers have determined GPP and R only in surface waters, a practice that may underestimate R in general and GPP in clear-water lakes in particular. We deployed oxygen sondes at multiple sites and depths in a clear-water lake. Rates of GPP or R were similar horizontally over the surface waters of the lake. Diel DO signals weakened with depth; however, removing noise from the data, by either wavelet transforms or moving averages, enhanced our ability to resolve diel metabolic signals. While GPP declined sharply with depth, R was unrelated to depth. The majority of GPP and R occurred in the upper mixed layer, but deeper water accounted for 14%–28% of GPP and 20%–43% of R, depending on the statistical filtering technique used. GPP and R were nearly in balance in the surface waters, but for the entire lake R exceeded GPP, and net ecosystem production was negative. Deployment of oxygen sondes in various habitats and at multiple depths allows for a more complete estimate of whole-lake metabolism and a better understanding of the spatial and temporal complexity of lakes. (English) [ABSTRACT FROM AUTHOR] Des mesures d’oxygène dissous (DO) répétées àhaute fréquence servent couramment àestimer la production primaire brute (GPP) et la respiration (R) dans les écosystèmes lacustres. La plupart des chercheurs mesurent GPP et R seulement dans les eaux superficielles, ce qui peut sous-estimer R de façon générale et GPP particulièrement dans les lacs àeau claire. Nous avons installé des sondes àoxygène dans plusieurs sites et àdiverses profondeurs dans un lac àeau claire. Les taux de GPP et de R sont semblables àune même profondeur sur toute l’étendue du lac. Les signaux journaliers de DO s’affaiblissent en profondeur; cependant, le retrait du bruit des données, soit par des transformations en ondelettes ou des moyennes glissantes, nous permet d’interpréter les signaux métaboliques journaliers. Alors que GPP diminue fortement en profondeur, R est indépendante de la profondeur. La plus grande partie de GPP et de R se produit dans la couche de mélange supérieure, mais les eaux profondes sont responsables de 14–28 % de GPP et de 20–43 % de R selon la technique de filtrage statistique retenue. GPP et R sont presque en équilibre dans les eaux superficielles, mais dans l’ensemble du lac, R est plus importante que GPP et la production nette de l’écosystème est négative. L’installation de sondes d’oxygène dans divers habitats et àplusieurs profondeurs permet ainsi une estimation plus complète du métabolisme du lac entier et une meilleure compréhension de la complexité spatiale et temporelle des lacs. (French) [ABSTRACT FROM AUTHOR] Copyright of Canadian Journal of Fisheries & Aquatic Sciences is the property of NRC Research Press and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts)
Keywords
WATER -- Dissolved oxygen; BIOCHEMICAL oxygen demand; OXYGEN; PRIMARY productivity (Biology); BIOLOGICAL productivity; BIOTIC communities; HABITAT (Ecology); EXPERIMENTAL design; LAKES
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity