Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
6054863
Reference Type
Journal Article
Title
Intra-VTA infusions of the substance P analogue, DiMe-C7, and intra-accumbens infusions of amphetamine induce analgesia in the formalin test for tonic pain
Author(s)
Altier, N; Stewart, J
Year
1993
Is Peer Reviewed?
Yes
Journal
Brain Research
ISSN:
0006-8993
EISSN:
1872-6240
Volume
628
Issue
1-2
Page Numbers
279-285
Language
English
PMID
7508809
DOI
10.1016/0006-8993(93)90965-p
Abstract
Experiments were designed to examine the analgesic effects of SP injected into the ventral tegmental area (VTA). Rats received bilateral intra-VTA infusions of 3.0 micrograms/0.5 microliter/side of the SP analogue, DiMe-C7, or the vehicle, either immediately prior to or 25 min following an injection of 0.05 ml of 2.5% formalin into one hind paw. Formalin-induced pain responses were continuously recorded for 75 min. DiMe-C7 attenuated pain responses for approximately 30 min; the analgesia was more potent and longer-lasting when DiMe-C7 was infused after, rather than prior to, the early pain phase. In another set of experiments, rats were tested in the formalin test immediately following bilateral infusions of amphetamine (1.5 or 2.5 micrograms/0.05 microliter/side) into either the medial prefrontal cortex (mPFC) or the nucleus accumbens septi (NAS). Amphetamine failed to alter pain responses when infused into the mPFC, but both doses attenuated pain responses during 25 min when infused into the NAS. There was no evidence for pain inhibition in the tail-flick test for phasic pain following either intra-VTA DiMe-C7 or intra-NAS amphetamine. The finding that intra-VTA DiMe-C7 and intra-NAS amphetamine produces analgesia in the formalin, but not the tail-flick test, suggests that activation of mesolimbic dopamine (DA) neurons contributes to suppression of tonic pain. Because stressors attenuate tonic pain responses, and are known to cause SP release in the VTA, we speculate that SP-induced activation of midbrain DA systems may mediate a form of pain- or stress-induced pain inhibitory system.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity