Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
6087780
Reference Type
Journal Article
Subtype
Review
Title
Cancer chemotherapy with indole-3-carbinol, bis(3'-indolyl)methane and synthetic analogs
Author(s)
Safe, S; Papineni, S; Chintharlapalli, S
Year
2008
Is Peer Reviewed?
Yes
Journal
Cancer Letters
ISSN:
0304-3835
EISSN:
1872-7980
Volume
269
Issue
2
Page Numbers
326-338
Language
English
PMID
18501502
DOI
10.1016/j.canlet.2008.04.021
Web of Science Id
WOS:000260143500013
Abstract
Indole-3-carbinol (I3C) conjugates are phytochemicals expressed in brassica vegetables and have been associated with the anticancer activities of vegetable consumption. I3C and its metabolite bis(3'-indolyl)methane (DIM) induce overlapping and unique responses in multiple cancer cell lines and tumors, and these include growth inhibition, apoptosis and antiangiogenic activities. The mechanisms of these responses are complex and dependent on cell context. I3C and/or DIM activate or inactivate multiple nuclear receptors, induce endoplasmic reticulum stress, decrease mitochondrial membrane potential, and modulate multiple signaling pathways including kinases. DIM has been used as a template to synthesize a series of 1,1-bis(3'indolyl)-1-(substituted aromatic)methanes (i.e. C-DIMs) which are also cytotoxic to cancer cells and tumors. Some of the effects of C-DIMs resemble those reported for DIM analogs; however, structure-activity studies with the aromatic ring has resulted in generation of highly unique receptor agonists. For example, p-trifluoromethylphenyl, p-t-butylphenyl and p-biphenyl analogs activate peroxisome proliferator-activated receptor gamma (PPARgamma), and p-methoxyphenyl and p-phenyl compounds activate nerve growth factor-induced-Balpha (NGFI-Balpha, Nur77) orphan nuclear receptor. The effects of C-DIMs on PPARgamma and Nur77 coupled with their receptor-independent activities has resulted in the development of a novel group of multi-targeted anticancer drugs with excellent potential for clinical treatment of cancer.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity