Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
616672
Reference Type
Journal Article
Title
Crystallization of glasses in the SrO-B2O3 system
Author(s)
Polyakova, I; Litovchik, E
Year
2008
Is Peer Reviewed?
Yes
Journal
Glass Physics and Chemistry
ISSN:
1087-6596
EISSN:
1608-313X
Volume
34
Issue
4
Page Numbers
369-380
Language
Russian
Abstract
Abstract  The crystallization of strontium borate glasses containing 16.7–43.0 mol % SrO is investigated. New crystalline compounds of the hypothetical compositions 2SrO · 3B2O3 (metastable) and SrO · 5B2O3 (stable below 750°C), as well as the metastable diborate modification β-SrO · 2B2O3, are revealed, and their X-ray powder diffraction data are obtained. It is demonstrated that, with a deficit of strontium oxide, the 4SrO · 7B2O3 compound forms solid solutions. Strontium triborate SrO · 3B2O3, which was previously prepared only through the dehydration of crystal hydrates, is produced using crystallization of glasses. The thermal stability of this compound is studied. The influence of the dispersity on the stability of different crystalline phases is discussed. Variants of the phase diagram for the SrO · B2O3-B2O3 system in the case of monolithic and dispersed samples are proposed from analyzing the experimental results and the data available in the literature. [ABSTRACT FROM AUTHOR] Copyright of Glass Physics & Chemistry is the property of Springer Science & Business Media B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts)
Keywords
SEPARATION (Technology); CHEMISTRY, Analytic; TECHNOLOGY; CHEMISTRY, Technical
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity